基于参数优化VMD的心率检测去噪算法

    Heart Rate Detection and Denoising Algorithm Based on Parameter Optimization VMD

    • 摘要: 针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性和全局搜索能力,文中利用ICOA对VMD的最佳适应度参数进行搜索,确定惩罚参数和分量个数,对心跳信号进行重构,从而实现心跳信号的干扰噪声去除。实验结果表明,ICOA-VMD方法具有收敛速度快、精度高的特点,信噪比和均方误差的评估和时域分析验证了该算法相较于小波变换和经验模态分解具有更好的性能。在不同距离的常规环境下,该方法针对不同受试者的心率检测平均精确度可以达到95.40%。

       

      Abstract: Addressing the issues that static clutter and respiratory harmonic interference noise exist in non-contact vital signs detection of millimeter wave radar, an improved coatis optimization algorithm based variational mode decomposition (ICOA-VMD) noise suppression algorithm is presented in this paper. The coatis optimization algorithm uses chaotic population initialization and adaptive function distribution to improve the population diversity and global search ability of the algorithm. So, ICOA is used to search the optimum fitness parameters of VMD and determine the penalty parameters and the number of components in this paper. Then, the heartbeat signal is reconstructed to remove the interference and noise of heartbeat signal. The experimental results show that the ICOA-VMD method has the characteristics of fast convergence and high precision, and evaluation and time domain analysis through signal-to-noise ratio and mean squared error show that the proposed algorithm has better performances than wavelet transform and empirical mode decomposition. The average accuracy of the proposed method can reach 95.40% for the heart rate detection of different subjects in the conventional environment at different distances.

       

    /

    返回文章
    返回