基于卡尔曼滤波的净空值预测

    Prediction of Clearance Value Based on Kalman Filtering

    • 摘要: 激光净空雷达是一种实时监测叶尖净空距离的激光雷达。在雨雾天气下,由于雨雾中的水汽、水滴等对激光信号产生散射、吸收等作用,导致激光净空雷达所获取的数据无效值显著增加。为了解决这一问题,利用激光净空雷达获取的净空数据,在数据预处理的基础上,构建了基于卡尔曼滤波的净空值预测模型,进行了净空值预测实验,并对预测后的净空数据进行了精度评价。实验结果表明,所提出的净空值预测方法取得了较高的预测精度,净空预测值和实测值的相关系数为0.99,均方根误差为0.07,平均相对误差为0.48 %,提升了激光净空雷达数据的有效性和完整性。所提研究为风力发电机组的净空预警控制提供了一定的参考依据。

       

      Abstract: The laser clearance radar is a type of lidar designed for real-time monitoring of the blade tip clearance distance. In rainy or foggy conditions, the water vapor and droplets in the atmosphere cause scattering and absorption of laser signals, leading to a significant increase in invalid data obtained by the laser clearance radar. To address this issue, on the basis of data pre-processing a clearance value prediction model based on Kalman filtering is developed using the clearance data acquired by the laser clearance radar. Experiments are conducted to predict clearance values, followed by accuracy evaluations of the predicted clearance data. The results demonstrate that the proposed clearance value prediction method achieves high prediction accuracy, with a correlation coefficient of 0.99 between predicted and measured clearance values, a root mean square error of 0.07, and an average relative error of 0.48 %, which improves the validity and integrity of the laser clearance radar data. The study provides a valuable reference for the clearance warning control of wind turbines.

       

    /

    返回文章
    返回