基于逆合成孔径激光雷达的粗糙目标成像特性研究

    Investigation into the Imaging Characteristics of Rough Targets with Inverse Synthetic Aperture Lidar

    • 摘要: 逆合成孔径激光雷达(ISAL)技术突破了光学衍射极限,实现了厘米级分辨率的超远距离雷达成像。本文针对粗糙表面的ISAL成像问题展开研究,粗糙表面作为模型能够较好地模拟复杂真实环境。研究中采用蒙特卡罗方法构建了粗糙表面的几何模型,并对粗糙表面参数的选择进行了讨论分析。基于基尔霍夫近似方法,详细计算并分析了粗糙表面的散射回波特性。随后,使用卷积逆投影算法对不同粗糙参数的表面进行了ISAL成像模拟。结果表明,较低的粗糙度能够提高相干散射的比例,使目标边缘更加清晰锐利;而较高的粗糙度则导致成像能量分布趋于均匀化。该研究包括从环境模型、电磁模型到ISAL成像技术的完整粗糙面目标模拟过程。仿真结果表明,粗糙面目标在ISAL成像中具有特定的散射特性,为自然环境中的遥感探测及目标参数反演提供了理论依据

       

      Abstract: Inverse Synthetic Aperture Lidar (ISAL) technology surpasses the optical diffraction limit, achieving centimeter-level resolution for ultra-long-distance radar imaging. This study delves into the ISAL imaging of rough surfaces, employing rough surfaces as models to effectively replicate the intricacies of complex real-world environments.The study employs the Monte Carlo method to construct the geometric model of rough surfaces, providing a comprehensive analysis of parameter selection for such surfaces. Leveraging the Kirchhoff approximation method, the scattering echo characteristics of rough surfaces are meticulously calculated and thoroughly examined.Subsequently, the convolution back-projection algorithm was applied to simulate ISAL imaging for surfaces with varying roughness parameters. The results demonstrate that lower surface roughness enhances the proportion of coherent scattering, rendering the target edges sharper and more defined, whereas higher roughness leads to a more uniform energy distribution across the reconstructed image. This study establishes a comprehensive simulation framework, encompassing environmental modeling, electromagnetic modeling, and ISAL imaging techniques for rough surface targets. The simulation results reveal that rough surface targets exhibit distinctive scattering characteristics in ISAL imaging, providing a robust theoretical foundation for remote sensing and parameter inversion in natural environments.
       

       

    /

    返回文章
    返回