结合多重尺度的红外与可见光图像融合算法

    An Infrared and Visible Image Fusion Algorithm Combining Multiple Scales

    • 摘要: 针对图像融合过程中出现的背景模糊、特征提取不充分和图像失真等问题,本文提出了一种结合多重尺度的红外与可见光图像融合算法。首先,将梯度算子深度融合至残差特征提取模块,通过感知不同方向上的梯度变化,有效提取边缘与细节信息。同时,采用残差连接机制,在保留底层信息的基础上强化网络对局部纹理的提取并缓解梯度消失。此外,所设计的多尺度特征提取模块结合了不同尺度的卷积核与感受野,实现了对特征的多尺度感知,进而获取更加丰富的语义特征。最后,为确保融合图像的结构相似性,引入了Ghostconv卷积模块与CBAM注意力机制,对特征进行高效的二次优化。使模型在减少参数量的同时也能够有效聚焦于关键特征的提取。本文基于TNO和MSRS两大数据集进行了全面的主客观评估,结果表明, 所提算法获得的融合图像,其纹理更加清晰,轮廓明显,在视觉效果上表现出显著优势。

       

      Abstract: To address background blurring, insufficient feature extraction, and image distortion in image fusion, this paper proposes a multi-scale infrared and visible image fusion algorithm. The gradient operator is integrated into the residual feature extraction module to effectively extract edge and detail information by capturing gradient changes in different directions. The residual connection mechanism enhances local texture extraction and mitigates gradient disappearance while retaining underlying information. The multi-scale feature extraction module combines convolutional kernels and receptive fields at different scales to achieve multi-scale perception and richer semantic features. To ensure structural similarity of fused images, the Ghostconv module and CBAM attention mechanism are introduced for efficient feature optimization, enabling the model to focus on key features while reducing parameters. Evaluations on the TNO and MSRS datasets show that the fused images exhibit clearer textures and sharper contours, with significant visual quality advantages.

       

    /

    返回文章
    返回