基于图学习的三维模型多视图聚类方法

    • 摘要: 本文针对制造业领域海量参数化三维模型数据资产的高效管理问题,提出了一种基于特征提取与多视图聚类的三维模型分析方法。通过分解三维模型,提取几何、拓扑、曲面及中心曲面四类特征,构建多视图表征体系。针对经典聚类方法易陷入局部最优解和对噪声敏感等问题,本文设计了一种基于一致隐空间的多视图聚类方法。该方法通过多视图数据学习潜在低维嵌入表示,在一致隐空间中构建关系图,并利用鲁棒估计器和迹约束优化关系图,最终输入谱聚类算法获得聚类结果。在TraceParts标准三维模型库上的实验表明,本方法显著优于当前最优的MCLES(Multi-view Clustering in Latent Embedding Space)算法,其中ACC提升5.5%,NMI提升8.0%,F-score提升9.2%,Precision提升13.8%。

       

      Abstract: This paper addresses the challenge of efficient management for massive parametric 3D model data assets in the manufacturing domain by proposing a novel 3D model analysis method based on feature extraction and multi-view clustering. Through decomposition of 3D models, we extract four categories of features (geometric, topological, surface, and medial surface) to construct a comprehensive multi-view representation system. To overcome the limitations of conventional clustering methods that are prone to local optima and sensitive to noise, we propose a unified latent space-based multi-view clustering approach. Our method learns latent low-dimensional embeddings from multi-view data, constructs relational graphs in a consistent latent space, and optimizes the graph structure using robust estimators with trace constraints before applying spectral clustering. Experimental results on the TraceParts standard 3D model dataset demonstrate that our method significantly outperforms the state-of-the-art MCLES (Multi-view Clustering in Latent Embedding Space) algorithm, achieving improvements of 5.5% in ACC, 8.0% in NMI, 9.2% in F-score, and 13.8% in Precision.

       

    /

    返回文章
    返回