一种新的基于虚拟阵列扩展和矩阵重构的相干信号DOA估计算法

    A new DOA estimation algorithm for coherent signals based on virtual array expansion and Toeplitz matrices reconstruction

    • 摘要: 针对目前矩阵重构类算法通过损失阵列孔径,即牺牲自由度进行解相干的问题,本文提出一种新的基于虚拟阵列扩展和矩阵重构的相干信号DOA估计算法(DOA estimation algorithm for coherent signals based on virtual array expansion and Toeplitz matrices reconstruction, VAE-TOEP)。首先利用四阶累积量的性质将阵列虚拟扩展以扩大阵列孔径,然而得到的四阶累积量矩阵中包含很多冗余项,如何去除这些冗余项以得到与虚拟扩展阵列导向矢量相对应的协方差矩阵是原阵列能否成功虚拟扩展的关键。本文算法对此进行了严密的推导:去除四阶累积量矩阵中与虚拟扩展阵列导向矢量不对应的行和列,保留其中与虚拟扩展阵列导向矢量相对应的行和列,得到的便是虚拟扩展后的数据协方差矩阵,再结合完整协方差矩阵信息平方矩阵重构算法对协方差矩阵进行重构,最后根据重构后的协方差矩阵对入射信号方向进行DOA估计。仿真实验结果表明,由于先对原阵列孔径进行了虚拟扩展,并且有效地去除了其中的冗余项,所以,即便利用完整协方差矩阵信息平方矩阵重构算法对协方差矩阵进行重构,亦不会降低协方差矩阵的维度,即并未牺牲阵列的自由度,因此,本文提出的算法相较于现有的矩阵重构类算法能够有效估计更多相干信号的波达方向,同时具有更高的DOA估计精度。

       

      Abstract: Aiming at the current matrix reconstruction algorithm for decoherence by losing the array aperture, i.e., sacrificing the degree of freedom, this thesis proposes a new DOA estimation algorithm for coherent signals based on virtual array expansion and Toeplitz matrices reconstruction (VAE-TOEP). Firstly, the nature of the forth-order cumulant is utilized to expand the array virtually to enlarge the array aperture, however, the obtained fourth-order cumulant matrix contains a lot of redundant entries, and how to remove these redundant entries in order to get the covariance matrix corresponding to the orientation vectors of the virtually extended array is the key to the success of the virtual expansion of the original array. In this thesis, the algorithm is derived rigorously: remove the rows and columns in the fourth-order cumulant matrix that do not correspond to the orientation vectors of the virtual expanded array, retain the rows and columns that correspond to the orientation vectors of the virtual expanded array, and then reconstruct the covariance matrix by combining with the Forward and Backward Partial Toeplitz square Matrices Reconstruction algorithm. Finally, the DOA estimation of incident signal direction is performed based on the reconstructed covariance matrix. The simulation experimental results show that, because of the virtual expansion of the original array aperture and the effective removal of the redundant entries, even if the covariance matrix is reconstructed using the Forward and Backward Partial Toeplitz square Matrices Reconstruction algorithm, the dimensionality of the covariance matrix will not be reduced, i.e., the degree of freedom of the array are not sacrificed, so the algorithm proposed in this thesis is able to efficiently estimate the direction of arrival of more coherent signals with higher DOA estimation accuracy than the existing matrix reconstruction algorithms without sacrificing the degrees of freedom.

       

    /

    返回文章
    返回