智能雷达逻辑架构及特点研究

    Research on the Logical Architecture and Characteristics of Intelligent Radar

    • 摘要: 本文提出了一种智能雷达的逻辑架构,构建了分层设计的感知认知处理分析机制、决策行动管理调度机制及人机交互闭环反馈机制。感知认知机制通过信号接收、实时处理、多源数据融合及战场态势分析,实现对动态环境的精准感知;决策行动管理调度机制基于任务规划、波形动态调度与自主资源优化配置,显著提升复杂场景下的自主决策效率;人机交互闭环反馈机制借助多模态交互与环境自适应优化,构建“感知-决策-修正”的增强回路,强化系统抗干扰鲁棒性。该逻辑架构深度融合强化学习与深度学习技术,在动态参数调整、智能抗干扰能力及多模态协同效能等方面展现出显著优势,形成复杂电磁环境下的“自主感知-学习优化-自主决策”闭环,兼具自适应优化能力与前瞻性决策优势,为下一代雷达发展提供关键技术路径。

       

      Abstract: This paper proposes a logical architecture for intelligent radar systems, establishing three core mechanisms: a hierarchical perception-cognition processing analysis mechanism, a decision-action management scheduling mechanism, and a human-machine interaction closed-loop feedback mechanism. The perception-cognition mechanism achieves precise environmental awareness through signal reception, real-time processing, multi-source data fusion, and battlefield situational analysis. The decision-action management scheduling mechanism significantly enhances autonomous decision-making efficiency in complex scenarios via task planning, dynamic waveform scheduling, and self-optimized resource allocation. The human-machine interaction closed-loop feedback mechanism constructs an  enhanced feedback loop of "perception-decision-correction" through multimodal interaction and environmental adaptive optimization, significantly improving system anti-jamming robustness. Deeply integrating reinforcement learning and deep learning technologies, this architecture demonstrates superior performance in dynamic parameter adjustment, intelligent anti-jamming capabilities, and multimodal collaborative efficiency. It forms a closed-loop system of "autonomous perception-learning optimization-autonomous decision-making" in complex electromagnetic environments, combining adaptive optimization capabilities with proactive decision-making advantages. This research provides critical technical pathways for next-generation radar development.

       

    /

    返回文章
    返回