基于STF-GNN毫米波雷达点云人体动作识别方法

    Human Action Recognition Method Based on STF-GNN for Millimeter-Wave Radar Point Cloud

    • 摘要: 针对毫米波雷达产生的稀疏点云数据时空关联性不足,局部动作特征离散化导致的特征表示不完整的问题,提出了一种时空融合图神经网络(Spatio-Temporal Fusion Graph Neural Network, STF-GNN)。首先,采用多层级的双向长短时记忆网络(Bi-LSTM)从连续帧点云中提取包含短时微变和长时运动轨迹的时序特征;其次,使用多尺度邻域聚合策略的图神经网络得到不规则点云的空间几何结构特征;最后通过双向时空交叉注意力融合模块增强对时空域特征的交互补偿,进一步加强人体动作的特征表示。我们在MMAction数据集和MMGesture数据集的表现进行了评估,分别得到98.86%和95.91%的准确率。

       

      Abstract: To address the insufficient spatiotemporal correlation and the incomplete feature representation caused by local action feature discretization in sparse pointcloud data generated by millimeterwave radar, this paper proposes a SpatioTemporal Fusion Graph Neural Network (STFGNN). First, a multilevel bidirectional long shortterm memory network (BiLSTM) is employed to extract temporal features—capturing both shortterm subtle variations and longterm motion trajectories—from consecutive pointcloud frames. Second, a graph neural network with a multiscale neighborhood aggregation strategy is used to derive the spatial geometric structure features of irregular point clouds. Finally, a bidirectional spatiotemporal crossattention fusion module is introduced to enhance interactive compensation between spatial and temporal features, thereby further strengthening the representation of human actions. The proposed method was evaluated on the MMAction and MMGesture datasets, achieving accuracies of 98.86% and 95.91%, respectively.

       

    /

    返回文章
    返回