基于相空间重构的一维海面目标检测算法

    Phase Space Reconstruction-Based Algorithm for 1D Maritime Target Detection

    • 摘要: 在海洋监测与防卫中,岸防雷达承担着实时监控海面动态、预警潜在威胁的重要任务。然而,雷达信号易受海杂波干扰——这种干扰源自电磁波与海浪、风浪等动态海洋环境相互作用产生的复杂散射信号,其随机性与时变性显著影响目标检测的稳定性。为提高雷达在复杂海况下的检测精度,深入研究海杂波的生成机理与预测方法成为雷达信号处理领域的核心课题,旨在通过抑制杂波干扰,优化雷达系统的可靠性与环境适应性。本文提出一种基于相空间重构的一维海面目标检测算法,该方法仅对雷达中的一维纯海杂波数据进行训练即可。通过计算延迟时间和嵌入维数,通过CNN-LSTM拟合出海杂波的短时可预测时间计算公式。结合海杂波幅值预测结果,从回波中有效识别出目标序列和海杂波序列。结合高海况的回波仿真数据和实测数据验证算法的有效性。

       

      Abstract: In marine monitoring and defense, coastal radars play a vital role in real-time sea surveillance and threat detection. However, radar signals are often corrupted by sea clutter—a complex scattering phenomenon caused by electromagnetic wave interactions with dynamic ocean surfaces. The randomness and time-varying nature of sea clutter degrade target detection performance. To enhance radar accuracy in complex sea conditions, studying sea clutter generation mechanisms and prediction methods is crucial for suppressing interference and improving system reliability.This paper proposes a 1D sea surface target detection algorithm based on phase space reconstruction, requiring only pure sea clutter data for training. By computing time delay and embedding dimension, a CNN-LSTM model predicts short-term sea clutter behavior. Combined with amplitude prediction, the algorithm effectively distinguishes target echoes from clutter. Validation using simulated high-sea-state data and real-world measurements confirms its effectiveness.

       

    /

    返回文章
    返回