机动目标时变非均匀分量ISAR转动补偿方法综述

    A Review of ISAR Rotation Compensation Methods for Time-varying Non-uniform Components of Maneuvering Targets

    • 摘要: 非合作目标机动所引起的时变非均匀转动分量会导致距离单元徙动(MTRC)的非线性化和高阶相位项,使最终的逆合成孔径雷达(ISAR)图像出现严重的散焦。该文聚焦时变非均匀转动分量补偿这一核心问题,从技术框架层面梳理相关研究进展:首先,对比分析基于非参数化时频分布成像与参数化数学模型估计两类补偿方法的适应性,揭示其在非均匀转动场景下的性能边界;其次,结合现有典型算法在强机动目标跟踪、低信噪比成像中的实验表现,总结出传统方法在非平稳运动建模、低信噪比相位估计等维度的理论局限;最后,从图像域端到端重建网络和运动参数估计网络两条技术路径,分析现有融合物理模型先验与深度学习混合补偿架构的发展现状,为提升复杂运动目标的ISAR成像质量提供理论参考与发展方向。

       

      Abstract: The time-varying non-uniform rotation component caused by the maneuvering of non-cooperative targets can lead to the non-linearization of the Migration of Range Cell (MTRC) and high-order phase terms, resulting in severe defocusing in the final Inverse Synthetic Aperture Radar (ISAR) image. This paper focuses on the core issue of compensating for the time-varying non-uniform rotation component and reviews the relevant research progress from the technical framework perspective: First, conduct a comparative analysis of the adaptability of two compensation methods: non-parametric time-frequency distribution imaging and parametric mathematical model estimation, to reveal the performance boundaries in non-uniform rotation scenarios. Secondly, based on the experimental performance of existing typical algorithms in strong maneuvering target tracking and low signal-to-noise ratio imaging, summarize the theoretical limitations of traditional methods in dimensions such as non-stationary motion modeling and low signal-to-noise ratio phase estimation. Finally, from the two technical paths of end-to-end reconstruction network in the image domain and motion parameter estimation network, analyze the current development status of the hybrid compensation architecture that integrates physical model priors with deep learning, providing theoretical references and development directions for improving the ISAR imaging quality of complex moving targets.

       

    /

    返回文章
    返回