结合Rényi熵正则化的近场SAR稀疏重建算法

    A Sparse Imaging Reconstruction Algorithm for Near-Field SAR Based on Rényi Entropy Regularization

    • 摘要: 近场合成孔径雷达成像技术在反恐安防、无损检测等领域应用前景广阔。然而,现有的成像算法普遍存在数据需求量大等问题,限制了其在实际中的推广与应用。基于压缩感知的稀疏成像技术虽能降低数据量,但传统稀疏重建方法仍存在感知矩阵规模巨大、易破坏图像块稀疏结构以及正则化参数难以自适应调整等问题。针对这些问题,本文提出一种结合Rényi熵正则化的稀疏成像算法。该研究基于一种能显著降低感知矩阵维度的二维稀疏成像模型,创新性地引入Rényi熵函数作为正则项,利用其非凸性与能量聚焦特性,有效保持了目标的几何结构;同时,采用改进的Barzilai-Borwein算法实现了正则化参数的自适应优化,提升了算法的鲁棒性。为验证算法有效性,本研究自主搭建了毫米波雷达数据采集平台,获取了有效的实测数据。实验结果表明,在非隐匿与隐匿目标成像场景下,该算法分别仅需全采样数据量的25%和56.25%,即可实现高分辨率成像,为复杂场景下的高分辨率近场雷达成像提供了有力的技术支撑。

       

      Abstract: Near‑field synthetic aperture radar imaging holds substantial promise for applications in counterterrorism security and nondestructive testing. However, most existing imaging algorithms demand large data volumes, which hinders their practical deployment. Although compressed sensing based sparse imaging can reduce sampling requirements, conventional sparse reconstruction methods still suffer from a prohibitive sensing‑matrix size, disruption of patch‑wise sparsity structures, and difficulty in adaptively tuning regularization parameters. To address these issues, we propose a sparse imaging algorithm with Rényi‑entropy regularization. Building on a two‑dimensional sparse imaging model that markedly reduces the dimensionality of the sensing matrix, we introduce the Rényi‑entropy function as a nonconvex, energy‑concentrating regularizer that preserves target geometry. In addition, a modified Barzilai–Borwein scheme is employed to adaptively optimize the regularization parameter, thereby improving algorithmic robustness. To validate the effectiveness of the proposed approach, we developed a millimeter‑wave radar data‑acquisition platform and collected real measurement data. Experimental results show that, for imaging scenarios with non‑concealed and concealed targets, the proposed method achieves high‑resolution reconstructions using only 25% and 56.25% of the fully sampled data, respectively, providing strong technical support for high‑resolution near‑field radar imaging in complex environments.

       

    /

    返回文章
    返回