基于多尺度生成对抗网络的雷达数据遮障区域建模方法

    Multi-scale Generative Adversarial Network-Based Modeling for Radar Data Occlusion Area

    • 摘要: 针对复杂环境下雷达数据中普遍存在的遮障现象,本文提出了一种基于多尺度生成对抗网络的雷达数据遮障区域建模方法。提出的方法设计了金字塔式的多尺度生成对抗网络,实现了遮障区域的空间一致性与统计特征的优化。设计了适用于雷达数据遮障区域模拟的损失函数,采用空间一致性约束与高阶矩匹配策略,增强了生成区域的合理性与真实性。为验证方法的有效性,研究采用了合成孔径雷达实测数据进行测试。结果表明,所提出的方法相比传统生成对抗网络,在结构相似性和信息熵等关键指标上提高了3%至5%。此外,在合成孔径雷达干涉图遮障区域模拟任务中,该方法改善了图像细节,提升了遮障区域的成像完整性与稳定性。综合分析结果表明,该方法不仅提高了雷达数据的建模精度,也为雷达数据缺失的补全与智能成像提供了创新性的解决方案。

       

      Abstract: We propose a radar data occlusion area modeling method based on multi-scale generative adversarial networks to address the common occlusion phenomenon in radar data in complex environments. The proposed method designs a pyramid shaped multi-scale generative adversarial network, achieving spatial consistency and optimization of statistical features in the obstructed area. We have designed a loss function suitable for simulating radar data occlusion areas, using spatial consistency constraints and high-order moment matching strategies to enhance the rationality and authenticity of the generated areas. To verify the effectiveness of the method, the study used measured data from synthetic aperture radar (SAR) for testing. The results show that the proposed method improves key indicators such as structural similarity and information entropy by 3% to 5% compared to traditional generative adversarial networks. In addition, in the simulation task of synthetic aperture radar interferogram occlusion area, this method improves image details and enhances the imaging integrity and stability of the occlusion area. The comprehensive analysis results indicate that this method not only improves the modeling accuracy of radar data, but also provides innovative solutions for the completion of missing radar data and intelligent imaging.

       

    /

    返回文章
    返回