基于级联双结构Transformer特征融合的零件点云分割方法

    Cascaded Dual-Structure Transformer Feature Fusion for Part-Based Point Cloud Segmentation

    • 摘要: 传统点云分割方法过度依赖局部聚合,难以有效捕捉点间复杂的相互关系,导致特征提取不充分及特征分割精度不够的问题。本文提出一种基于级联双结构Transformer的多层次特征融合网络(Cascade Dual-structure Transformer feature fusion , CDSTNet),可充分利用点云的细节和三维表示能力,实现对工业零件模型的精准特征分割。CDSTNet设计了一个三层特征提取网络,能够有效捕获全局、局部及细节特征,并通过自注意力融合模块进行深度融合,显著增强了点云特征的细节表达。为进一步提升模型对点云拓扑关系的理解和几何特征的提取能力,融合了交叉注意力和全局注意力构建级联双结构Transformer模块。在自制数据集上,本文方法的分割精度(mIoU)为99.71%,相较于PointNet、PointNet++、DGCNN、GTNet分别提升了2.14%、1.08%、0.3%、0.1%;在通用数据集上,mIoU为85.38%,对比前三个网络分别提升了1.6%、0.2%、0.1%,尽管相较于GTNet没有提升,但是训练速度提升了一倍。

       

      Abstract: Traditional point cloud segmentation methods often over-rely on local aggregation, which struggles to effectively capture complex inter-point relationships. This limitation leads to insufficient feature extraction and limited segmentation accuracy. To address these issues, this paper proposes a Cascade Dual-structure Transformer Feature Fusion Network (CDSTNet), designed to fully leverage the detailed information and 3D representation capabilities of point clouds for precise feature segmentation of industrial part models. CDSTNet incorporates a three-layer feature extraction network to effectively capture global, local, and detailed features. These features are then deeply integrated through a self-attention fusion module, significantly enhancing the detail expression of point cloud features. Furthermore, to improve the model's understanding of point cloud topology and geometric feature extraction, a cascade dual-structure Transformer module integrating cross-attention and global attention mechanisms is constructed. On a custom dataset, CDSTNet achieves a segmentation accuracy (mIoU) of 99.71% , outperforming PointNet, PointNet++, DGCNN, and GTNet by 2.14%, 1.08%, 0.3%, and 0.1%, respectively. On a general dataset, it achieves an mIoU of 85.38%, showing improvements of 1.6%, 0.2%, and 0.1% over PointNet, PointNet++, and DGCNN. While comparable to GTNet in accuracy on the general dataset, CDSTNet doubles the training speed.

       

    /

    返回文章
    返回