面向煤矿巷道的LiDAR/IMU紧耦合三维地图构建方法

    A Tightly-Coupled LiDAR/IMU Method for 3D Map Construction in Coal Mine Tunnels

    • 摘要: 针对煤矿巷道环境中场景重复性高、特征退化严重以及行人、设备等动荡目标频繁出现导致传统激光SLAM算法鲁棒性较差的问题,提出一种面向煤矿井下机器人的LiDAR/IMU紧耦合三维地图构建方法。设计基于广度优先遍历算法的点云聚类与动荡特征剔除策略;前端融合雷达特征点和惯性测量单元(InertialMeasurementUnit,IMU)测量,对点云扫描过程中产生的运动畸变进行时间同步与运动补偿,引入改进的迭代扩展卡尔曼滤波(Iterated Extended Kalman Filter,IEKF)去除噪点,并结合列文伯格-马夸特(Levenberg-Marquardt,LM)阻尼策略修正预测协方差矩阵,构建融合LiDAR特征和IMU预积分的紧耦合IEKF–LM估计框架;后端采用因子图优化建模IMU预积分约束与回环约束,实现长距离井下巷道环境中的全局一致性三维地图构建。利用公开数据集KITTI和模拟实验对所提方法的性能进行验证。实验结果表明,所提算法明显优于FAST-LIO2和A-LOAM算法,在地图构建的全局一致性上有着良好的发挥,能够在去除动荡特征物的基础上保留完整的可行驶区域地图,该方法能够为煤矿井下机器人的精确导航提供参考。

       

      Abstract: To address the poor robustness of traditional simultaneous localization and mapping (SLAM) algorithms in coal mine roadway environments, this paper proposes a LiDAR/IMU tightly coupled localization and mapping method. Considering the unstructured and highly dynamic characteristics of coal mine roadways, a point cloud clustering and dynamic-feature removal strategy based on the Breadth-First Search (BFS) algorithm is designed. In the front end, LiDAR feature points are fused with inertial measurement unit (IMU) data to perform time synchronization and motion compensation for motion distortions induced during LiDAR scanning. An improved iterative Kalman filter is employed to suppress noise, while the Levenberg–Marquardt (LM) method is used to refine the predicted covariance matrix, forming a tightly coupled IEKF–LM estimation framework that integrates LiDAR features and IMU pre-integration. In the back end, IMU pre-integration constraint factors and loop-closure factors are constructed with iterative initialization to perform global factor graph optimization. The proposed method is evaluated on the public KITTI dataset and through simulation experiments. Experimental results demonstrate that the proposed algorithm significantly outperforms FAST-LIO2 and A-LOAM in terms of global map consistency, and is capable of removing dynamic features while preserving a complete traversable area map. This method can provide a valuable reference for precise navigation of underground coal mine robots.

       

    /

    返回文章
    返回