基于改进CBR的天气雷达故障诊断专家系统的研究

    A Study on Weather Radar Fault Diagnosis Expert System Based on Improved Case-based Reasoning

    • 摘要: 新一代天气雷达的出现,增加了雷达控制系统的复杂度和故障诊断的难度,为了保证天气雷达系统工作的可靠性和维修性能,设计了一种基于改进案例推理(CBR)的天气雷达智能故障专家诊断系统。首先,介绍了CBR的雷达故障诊断原理;然后,给出了利用相似距离函数和BP神经网络匹配法进行故障诊断的方法,并且讨论在CBR 中如何加入硬件更换调整参数数据库。重点针对CINRAD/ CC雷达天线伺服系统中的硬件特点,详细介绍了雷达伺服系统中电机驱动器及电机故障的CBR方法,以及硬件更换后对参数进行检测、设置的专家指导方案。详实的3 个CINRAD/ CC 雷达故障诊断案例表明了该故障诊断专家系统的有效性与实用性。

       

      Abstract: The emergence of a new generation of weather radar increases the complexity of radar control system and the difficulty of troubleshooting. In order to ensure the reliability and maintenance performance of weather radar systems, a weather radar intelligent fault diagnostic expert system based on improved case-based reasoning (CBR) is designed. The radar fault diagnosis principle,fault diagnosis method based on similar distance function and the BP neural network matching method,and how to join the hardware replacement adjustment parameter database are described in this paper. Focusing CINRAD / CC radar antenna servo system hardware characteristics, the CBR method of motor drive and failure in radar servo system, the experts mentoring program of parameter detection and setting after hardware replacement are introduced in detail. Three CINRAD / CC radar fault diagnosis cases show the effectiveness and practicality of the fault diagnosis expert system.

       

    /

    返回文章
    返回