• 北大中文核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • 中国科技核心期刊
  • 中国应用型核心期刊
  • RSSCE中国核心学术期刊
  • 雷达行业协会核心期刊
  • 世界期刊影响力指数(WJCI)报告
二维码

基于PHD滤波的舰载雷达与ESM融合算法

周文辉

周文辉. 基于PHD滤波的舰载雷达与ESM融合算法[J]. 现代雷达, 2020, 42(8): 61-66.
引用本文: 周文辉. 基于PHD滤波的舰载雷达与ESM融合算法[J]. 现代雷达, 2020, 42(8): 61-66.
ZHOU Wenhui. A PHD Filter Based Fusing Algorithm for Shipboard Radar and ESM[J]. Modern Radar, 2020, 42(8): 61-66.
Citation: ZHOU Wenhui. A PHD Filter Based Fusing Algorithm for Shipboard Radar and ESM[J]. Modern Radar, 2020, 42(8): 61-66.

基于PHD滤波的舰载雷达与ESM融合算法

A PHD Filter Based Fusing Algorithm for Shipboard Radar and ESM

  • 摘要: 针对雷达与电子支援侦察(ESM)主被动传感器联合定位与目标跟踪,提出了基于概率假设密度(PHD)滤波的雷达-ESM融合算法,并给出了其混合高斯实现方法。该算法能够利用多ESM侦察信息实现联合目标定位及识别,还可综合雷达信息实现异源传感器融合,从而实现杂波环境下多目标高精度跟踪及目标检测。大量蒙特卡洛仿真实验表明:该算法是一种有效的雷达-ESM协同跟踪融合方法。
    Abstract: A probability hypothesis density filter based radar-electronic suport measurement (ESM) tracking and fusing algorithm is proposed for radar network associated with passive heterogeneous sensor ESM, which is implemented by the Gaussian mixture method. The algorithm can not only make use of ESM reconnaissance information for joint target locating and recognizing, but also utilize radar information for multi-sensor fusion. In addition, it can detect and track multiple targets with high accuracy under clutter environment. Large amounts of Monte Carlo simulation results show that the method is an efficient method to realize multi-target tracking and fusion between radar and ESM.
  • 期刊类型引用(3)

    1. 曾小东. 有源/无源协同跟踪与雷达辐射控制方法. 舰船电子工程. 2022(10): 77-82 . 百度学术
    2. 亢院兵,赵甫哲. 基于改进滤波算法的ADS-B航空目标监视雷达信道优化. 现代雷达. 2021(01): 42-49 . 本站查看
    3. 王颖. 一种多扫描平滑的多目标GM-PHD滤波器的技术研究. 襄阳职业技术学院学报. 2021(04): 73-77 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  12078
  • HTML全文浏览量:  0
  • PDF下载量:  239
  • 被引次数: 5
出版历程
  • 刊出日期:  2020-08-24

目录

    /

    返回文章
    返回